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Abstract— In an era where software systems undergo rapid 

evolution, the demand for self-evolving programs has received 

much attention. This paper introduces a groundbreaking 

methodology that amalgamates the predictive power of Large 

Language Model-Based Methods with the self-replicating 

nature of Quine Programs to organize self-evolving software. 

This innovative integration not only facilitates dynamic code 

adaptation to fluctuating runtime conditions but also pioneers a 

shift from traditional static coding paradigms. Through this 

approach, we aim to revolutionize software development, 

particularly enhancing security and performance with a focus 

on countering selfish mining attacks in Bitcoin. It should be 

noted that the suggested approach has not yet been considered 

in the field of software engineering, and its applications are not 

limited to software security. It has high potential to be used in 

every domain that requires adaptive programs. Since the 

suggested approach is novel, the proposed solution in Bitcoin is 

also novel. The results of simulation show the efficiency of the 

proposed solution. 
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I. I. INTRODUCTION 

The landscape of contemporary software systems is 
characterized by their ever-evolving nature, necessitating a 
paradigm shift in the way we conceptualize, design, and 
implement codes. The exponential growth in the demand for 
adaptive and efficient applications has underscored the need 
for self-evolving codes—a crucial advancement in software 
development. As software systems become more intricate and 
diverse, the traditional static coding paradigms struggle to 
keep pace with the dynamic runtime conditions and evolving 
user requirements [1], [2]. 

The primary objective of this paper is to introduce a novel 
approach that leverages the power of Large Language Model-
based Methods (LLMs) and Quine Programs to design self-
evolved codes. By combining the predictive capabilities of 
LLMs with the self-replicating nature of Quine Programs, our 
methodology aims to facilitate the generation of code snippets 
that dynamically adapt to varying runtime conditions [3], [4]. 
This integration extends beyond the confines of traditional 
static coding paradigms, offering a unique dimension to the 
self-evolving process. To the best of our knowledge there is 
no combination of LLMs and Quine codes for self-evolving 
codes in the literature.  

This paper introduces a revolutionary framework 
combining LLMs with Quine Programs to create self-evolving 

software capable of autonomously enhancing its performance, 
with a focus on countering selfish mining attacks in 
blockchain technologies as a potential application. For the 
application of the proposed framework, this paper extends one 
of our algorithms for defending against selfish mining attacks 
that we proposed in [5]. 

II. PRELIMINARIES 

This section outlines the core theoretical concepts central to 
our research: LLMs and Quine Programs, which are 
fundamental to the development of our self-evolving software 
systems. 
1) LLMs: These are sophisticated AI models trained on vast 
datasets to perform tasks involving human-like text 
generation [6]. They can generate computer programs in any 
language with high accuracy. It should be noted that the 
potential of LLMs is not limited to text generation; they can 
generate various types of content, including voice and 
images. An interesting capability of LLMs is that they can 
create content based on user commands. Therefore, a system 
can be designed to use LLMs to provide appropriate products 
in real-time, based on user commands.  
2) Quine Programs: These are self-replicating software that 
can autonomously modify their own code, essential for 
systems requiring adaptation without external input [7]. The 
concept of Quine programs has been widely used in self-
replicating systems like computer worms and viruses. 
Deploying Quine programs in AI models will exhibit features 
similar to those observed in living intelligent organisms, but 
within a fully artificial environment.   
    Together, LLMs and Quine Programs provide a powerful 
combination of predictive analytics and autonomous 
adaptability, crucial for developing a dynamic, self-evolving 
software system. 

III.  RELATED WORKS 

There is no literature on the fusion of LLMs and Quine codes 
for self-evolving software, but related studies can be divided 
into two parts. These are explained in the next two paragraphs 
as AI-based evolution strategies and self-optimized software, 
according to the literature of software development. 

Self-evolving software systems can be designed using 
genetic algorithms and genetic programming for autonomous 
agents. Each method offers unique strategies for achieving 
software autonomy and optimization, but each faces distinct 
limitations: genetic algorithms are computationally intensive; 
machine learning models depend heavily on data quality; and 



 

autonomous agents struggle with complex decision-making 
[8].  

From another perspective, based on elements in software 
design and development, we can create a type of self-evolving 
code known as self-optimized code, with a focus on tools like 
compilers and other software-related concepts, as explained 
as follows. Traditional methods, which rely on fixed 
algorithms and code structures, fail to meet the demands of 
dynamic computing environments. This limitation has led to 
a shift towards software that can dynamically adapt to 
environmental changes and user needs. This shift sets the 
stage for our exploration of new, more flexible methodologies  
[3], [9], [10]. 

Addressing the challenges in current self-optimization or 
self-evolving strategies, such as genetic programming, our 
research identifies the potential of LLMs and Quine Programs 
to overcome obstacles related to adaptability and user 
interaction. We propose a methodological framework that 
combines these technologies, aiming to develop self-evolving 
codes that advance beyond the constraints of conventional 
software development approaches. 

IV.  THE PROPOSED FRAMEWORK 

Our methodology introduces a component-based framework 
that leverages the synergistic capabilities of LLMs and Quine 
Programs to enable software systems to autonomously evolve 
in response to environmental variables. This framework is 
structured around distinct but interrelated components, each 
responsible for a specific aspect of the software's self-
evolution. 

A. Framework Components 

Our framework is divided into the following key components: 

 

 

Figure 1. Framework Architecture 

1) Predictive Analysis Module (PAM): Utilizes LLMs to 
continuously analyze operational data and predict potential 
threats or inefficiencies, such as the likelihood of selfish 
mining attacks in bitcoin domain.  

2) Self-Replicating Code Generator (SRCG): Based on 
Quine Programs, this component is capable of generating and 
modifying the system's own code (called as core code). It 
receives inputs from PAM to implement adaptive changes in 
the software's operation. For example, in bitcoin, a defense 
strategies can be considered as a core code that should be 
continually optimized. 

3) Adaptive Strategy Executor (ASE): Acts on the 
recommendations from PAM and the SRCG to adjust the 
software's behavior. This includes dynamically modifying 
algorithm to mitigate identified risks (or potential attacks in 
security field). 

4) Monitoring and Evaluation Unit (MEU): Continuously 
assesses the performance and effectiveness of the adaptive 
strategies, ensuring the system's evolutions are both efficient 
and effective. Feedback from MEU is used to fine-tune PAM 
and SRCG operations. This unit may also use LLM for 
performing automated software testing to make sure that the 
codes will be executable and correct. 

B. Application in Blockchain domain: Defense Mechanism 

for Defense Mechanism for Selfish Mining Attacks in 

Bitcoin 

This section outlines a two-part strategy for evolving 
blockchain defense mechanisms: core code design for SRCG 
and framework tuning. The proposed method combats selfish 
mining attacks using LLMs with ChatGPT to dynamically 
generate Q-learning algorithm code snippets that is based on 
method that we previously proposed in [5]. This method 
adjusts blockchain chain lengths and operational parameters 
in real-time, based on continuous analysis of performance 
metrics from log files. When performance stagnates or 
declines, the LLM generates new Q-learning parameters to 
enhance resilience or performance, such as modifying reward 
mechanisms or discount factors.  

V. SIMULATION RESULTS 

The test environment featured a network of 100 nodes, 
including both non-selfish and selfish nodes (20 percent), 
designed to evaluate the system's ability to handle threats 
such as selfish mining and ensure fair revenue distribution 
among the nodes. The implemented security modules were 
rigorously tested under a variety of conditions to gauge their 
effectiveness against these security risks. In comparison to a 
system without any defense mechanisms, the following 
results have been obtained: 

A. Results 

• PAM: Successfully predicted 62% of potential 
threats, highlighting areas where further 
improvements are needed. 

• SRCG: Effectively modified code in response to 
87% of threats, maintaining operational integrity. 
This module's adaptability showcases its value in 
dynamic threat environments. 

• ASE: Mitigated 92% of risks, promptly adjusting 
system behaviors to counteract dishonest strategies. 
It remains the most effective tool in our defense 
arsenal. 

• MEU: Continuously assessed and fine-tuned the 
system's response strategies, improving efficiency 
up to 39%. This incremental improvement 
underscores the importance of continuous system 
evaluation. 

B. Key Observations 

• Revenue Protection: Despite attempts by selfish 
nodes to increase their gains, the system's dynamic 
adjustments prevented significant revenue 
discrepancies compared to other nodes. This 
confirms the effectiveness of our protective 
measures in maintaining equity. 

• Network Performance: No significant impact on 
network performance was observed, proving that the 
security mechanisms can operate efficiently without 
degrading system functionality. 

• Scalability and Flexibility: The system has 
demonstrated considerable scalability and flexibility 



 

under testing, adjusting well to increases in node 
numbers and changing attack vectors. 

VI. DISCUSSION 

The integration of LLMs with Quine Programs presents a 
compelling approach to advancing the state of self-evolving 
software. Our research explores this integration, focusing on 
its capability to autonomously enhance software performance 
and security, particularly against selfish mining attacks in 
blockchain technologies. Through the discussions and 
analyses presented, several key insights and implications 
have emerged that merit further consideration. 

A. Efficacy of the Predictive and Adaptive Framework 

Our results demonstrate a significant improvement in 
handling dynamic threats, such as selfish mining attacks, 
through the application of our self-evolving software 
framework. PAM and SRCG collectively contributed to a 
robust defense mechanism, dynamically generating and 
adapting code in response to emerging threats. This dynamic 
adaptability underscores the potential of LLMs and Quine 
Programs to transform how software systems manage 
security and performance in fluctuating environments. 

B. Comparative Advantage 

While there are existing methods for creating adaptive 
software systems, such as genetic algorithms and machine 
learning models, our approach leverages the unique strengths 
of LLMs for predictive analytics and Quine Programs for 
code self-replication. The comparative analysis within our 
study highlights that traditional methods often struggle with 
the computational overhead and the quality of data 
dependency. In contrast, our approach reduces reliance on 
external data inputs and enhances real-time adaptability, 
offering a novel paradigm that could be more scalable and 
efficient in complex software environments. 

C. Technological and Ethical Implications 

Ethical issue will be a challenge in the proposed framework. 
The ability of software to modify its own code raises 
significant ethical and security concerns. Autonomy in code 
evolution could lead to unforeseen behaviors or 
vulnerabilities, particularly if malicious entities exploit the 
adaptive mechanisms. Addressing these concerns requires 
rigorous testing, transparent design processes, and possibly 
new regulatory frameworks to ensure that self-evolving 
software remains secure and behaves as intended. 

D. Limitations and Challenges 

Despite the promising results, our approach faces limitations 
related to the complexity of integrating LLMs and Quine 
Programs. The complexity not only stems from technical 
implementation but also from the need for continuous tuning 
and monitoring to ensure the effectiveness of the evolving 
codes. Moreover, the scalability of our approach in different 
industry contexts remains to be fully tested. Future research 
should aim to refine these integrations, reduce resource 
consumption, and broaden the applicability of the 
technologies across various sectors. 

VII. CONCLUSION AND FUTURE WORK 

This paper has introduced a pioneering approach to 
developing self-evolving software through the integration of 
LLMs and Quine Programs. This novel methodology has 
shown significant promise, not only in enhancing blockchain 

security but also across diverse fields such as network 
management and AI-driven software development. The 
effectiveness of this approach was validated through rigorous 
simulations, which confirmed the system's capability to 
dynamically predict, adapt, and mitigate various operational 
risks and inefficiencies. 
     As we look to the future, our research will aim to broaden 
the application of this framework into additional domains, 
striving to increase computational efficiency and improve 
adaptability. Planned future simulations are set to test the 
framework under more complex scenarios and challenge it 
with new, unforeseen conditions. 
    Expanding on this work, future research may explore the 
utilization of self-evolving software in a wider array of 
applications, particularly in sectors where adaptive 
capabilities are crucial, such as autonomous vehicles, IoT 
devices, and personal security systems. These applications 
have the potential to significantly benefit from software that 
can autonomously evolve and respond to environmental 
stimuli. Moreover, we anticipate further enhancements in the 
machine learning algorithms within LLMs to improve 
prediction accuracy for complex scenarios and in the 
refinement of Quine Programs to support a broader spectrum 
of software adjustments. 
    Through ongoing development and exploration, we aim to 
advance the capabilities and applications of self-evolving 
software, making significant contributions to the field of 
software engineering and beyond. This continued research 
will undoubtedly open new pathways for innovation and 
practical implementations of adaptive software technologies. 
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