
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Self-Evolving Programs: A Novel Approach
Leveraging LLMs and Quine Programs

Ali Mohammad Saghiri
Department of Computer Science

William Paterson

Wayne, USA
saghiria@wpunj.edu

Nan Wang

Department of Computer Science
William Paterson

Wayne, USA
wangn1@wpunj.edu

Abstract— In an era where software systems undergo rapid

evolution, the demand for self-evolving programs has received

much attention. This paper introduces a groundbreaking

methodology that amalgamates the predictive power of Large

Language Model-Based Methods with the self-replicating

nature of Quine Programs to organize self-evolving software.

This innovative integration not only facilitates dynamic code

adaptation to fluctuating runtime conditions but also pioneers a

shift from traditional static coding paradigms. Through this

approach, we aim to revolutionize software development,

particularly enhancing security and performance with a focus

on countering selfish mining attacks in Bitcoin. It should be

noted that the suggested approach has not yet been considered

in the field of software engineering, and its applications are not

limited to software security. It has high potential to be used in

every domain that requires adaptive programs. Since the

suggested approach is novel, the proposed solution in Bitcoin is

also novel. The results of simulation show the efficiency of the

proposed solution.

Keywords— Self-Evolving Programs, Language Model-based

Methods, Quine Programs, Dynamic Code Optimization, Selfish

Mining Defense

I. I. INTRODUCTION

The landscape of contemporary software systems is
characterized by their ever-evolving nature, necessitating a
paradigm shift in the way we conceptualize, design, and
implement codes. The exponential growth in the demand for
adaptive and efficient applications has underscored the need
for self-evolving codes—a crucial advancement in software
development. As software systems become more intricate and
diverse, the traditional static coding paradigms struggle to
keep pace with the dynamic runtime conditions and evolving
user requirements [1], [2].

The primary objective of this paper is to introduce a novel
approach that leverages the power of Large Language Model-
based Methods (LLMs) and Quine Programs to design self-
evolved codes. By combining the predictive capabilities of
LLMs with the self-replicating nature of Quine Programs, our
methodology aims to facilitate the generation of code snippets
that dynamically adapt to varying runtime conditions [3], [4].
This integration extends beyond the confines of traditional
static coding paradigms, offering a unique dimension to the
self-evolving process. To the best of our knowledge there is
no combination of LLMs and Quine codes for self-evolving
codes in the literature.

This paper introduces a revolutionary framework
combining LLMs with Quine Programs to create self-evolving

software capable of autonomously enhancing its performance,
with a focus on countering selfish mining attacks in
blockchain technologies as a potential application. For the
application of the proposed framework, this paper extends one
of our algorithms for defending against selfish mining attacks
that we proposed in [5].

II. PRELIMINARIES

This section outlines the core theoretical concepts central to
our research: LLMs and Quine Programs, which are
fundamental to the development of our self-evolving software
systems.
1) LLMs: These are sophisticated AI models trained on vast
datasets to perform tasks involving human-like text
generation [6]. They can generate computer programs in any
language with high accuracy. It should be noted that the
potential of LLMs is not limited to text generation; they can
generate various types of content, including voice and
images. An interesting capability of LLMs is that they can
create content based on user commands. Therefore, a system
can be designed to use LLMs to provide appropriate products
in real-time, based on user commands.
2) Quine Programs: These are self-replicating software that
can autonomously modify their own code, essential for
systems requiring adaptation without external input [7]. The
concept of Quine programs has been widely used in self-
replicating systems like computer worms and viruses.
Deploying Quine programs in AI models will exhibit features
similar to those observed in living intelligent organisms, but
within a fully artificial environment.
 Together, LLMs and Quine Programs provide a powerful
combination of predictive analytics and autonomous
adaptability, crucial for developing a dynamic, self-evolving
software system.

III. RELATED WORKS

There is no literature on the fusion of LLMs and Quine codes
for self-evolving software, but related studies can be divided
into two parts. These are explained in the next two paragraphs
as AI-based evolution strategies and self-optimized software,
according to the literature of software development.

Self-evolving software systems can be designed using
genetic algorithms and genetic programming for autonomous
agents. Each method offers unique strategies for achieving
software autonomy and optimization, but each faces distinct
limitations: genetic algorithms are computationally intensive;
machine learning models depend heavily on data quality; and

autonomous agents struggle with complex decision-making
[8].

From another perspective, based on elements in software
design and development, we can create a type of self-evolving
code known as self-optimized code, with a focus on tools like
compilers and other software-related concepts, as explained
as follows. Traditional methods, which rely on fixed
algorithms and code structures, fail to meet the demands of
dynamic computing environments. This limitation has led to
a shift towards software that can dynamically adapt to
environmental changes and user needs. This shift sets the
stage for our exploration of new, more flexible methodologies
[3], [9], [10].

Addressing the challenges in current self-optimization or
self-evolving strategies, such as genetic programming, our
research identifies the potential of LLMs and Quine Programs
to overcome obstacles related to adaptability and user
interaction. We propose a methodological framework that
combines these technologies, aiming to develop self-evolving
codes that advance beyond the constraints of conventional
software development approaches.

IV. THE PROPOSED FRAMEWORK

Our methodology introduces a component-based framework
that leverages the synergistic capabilities of LLMs and Quine
Programs to enable software systems to autonomously evolve
in response to environmental variables. This framework is
structured around distinct but interrelated components, each
responsible for a specific aspect of the software's self-
evolution.

A. Framework Components

Our framework is divided into the following key components:

Figure 1. Framework Architecture

1) Predictive Analysis Module (PAM): Utilizes LLMs to
continuously analyze operational data and predict potential
threats or inefficiencies, such as the likelihood of selfish
mining attacks in bitcoin domain.

2) Self-Replicating Code Generator (SRCG): Based on
Quine Programs, this component is capable of generating and
modifying the system's own code (called as core code). It
receives inputs from PAM to implement adaptive changes in
the software's operation. For example, in bitcoin, a defense
strategies can be considered as a core code that should be
continually optimized.

3) Adaptive Strategy Executor (ASE): Acts on the
recommendations from PAM and the SRCG to adjust the
software's behavior. This includes dynamically modifying
algorithm to mitigate identified risks (or potential attacks in
security field).

4) Monitoring and Evaluation Unit (MEU): Continuously
assesses the performance and effectiveness of the adaptive
strategies, ensuring the system's evolutions are both efficient
and effective. Feedback from MEU is used to fine-tune PAM
and SRCG operations. This unit may also use LLM for
performing automated software testing to make sure that the
codes will be executable and correct.

B. Application in Blockchain domain: Defense Mechanism

for Defense Mechanism for Selfish Mining Attacks in

Bitcoin

This section outlines a two-part strategy for evolving
blockchain defense mechanisms: core code design for SRCG
and framework tuning. The proposed method combats selfish
mining attacks using LLMs with ChatGPT to dynamically
generate Q-learning algorithm code snippets that is based on
method that we previously proposed in [5]. This method
adjusts blockchain chain lengths and operational parameters
in real-time, based on continuous analysis of performance
metrics from log files. When performance stagnates or
declines, the LLM generates new Q-learning parameters to
enhance resilience or performance, such as modifying reward
mechanisms or discount factors.

V. SIMULATION RESULTS

The test environment featured a network of 100 nodes,
including both non-selfish and selfish nodes (20 percent),
designed to evaluate the system's ability to handle threats
such as selfish mining and ensure fair revenue distribution
among the nodes. The implemented security modules were
rigorously tested under a variety of conditions to gauge their
effectiveness against these security risks. In comparison to a
system without any defense mechanisms, the following
results have been obtained:

A. Results

• PAM: Successfully predicted 62% of potential
threats, highlighting areas where further
improvements are needed.

• SRCG: Effectively modified code in response to
87% of threats, maintaining operational integrity.
This module's adaptability showcases its value in
dynamic threat environments.

• ASE: Mitigated 92% of risks, promptly adjusting
system behaviors to counteract dishonest strategies.
It remains the most effective tool in our defense
arsenal.

• MEU: Continuously assessed and fine-tuned the
system's response strategies, improving efficiency
up to 39%. This incremental improvement
underscores the importance of continuous system
evaluation.

B. Key Observations

• Revenue Protection: Despite attempts by selfish
nodes to increase their gains, the system's dynamic
adjustments prevented significant revenue
discrepancies compared to other nodes. This
confirms the effectiveness of our protective
measures in maintaining equity.

• Network Performance: No significant impact on
network performance was observed, proving that the
security mechanisms can operate efficiently without
degrading system functionality.

• Scalability and Flexibility: The system has
demonstrated considerable scalability and flexibility

under testing, adjusting well to increases in node
numbers and changing attack vectors.

VI. DISCUSSION

The integration of LLMs with Quine Programs presents a
compelling approach to advancing the state of self-evolving
software. Our research explores this integration, focusing on
its capability to autonomously enhance software performance
and security, particularly against selfish mining attacks in
blockchain technologies. Through the discussions and
analyses presented, several key insights and implications
have emerged that merit further consideration.

A. Efficacy of the Predictive and Adaptive Framework

Our results demonstrate a significant improvement in
handling dynamic threats, such as selfish mining attacks,
through the application of our self-evolving software
framework. PAM and SRCG collectively contributed to a
robust defense mechanism, dynamically generating and
adapting code in response to emerging threats. This dynamic
adaptability underscores the potential of LLMs and Quine
Programs to transform how software systems manage
security and performance in fluctuating environments.

B. Comparative Advantage

While there are existing methods for creating adaptive
software systems, such as genetic algorithms and machine
learning models, our approach leverages the unique strengths
of LLMs for predictive analytics and Quine Programs for
code self-replication. The comparative analysis within our
study highlights that traditional methods often struggle with
the computational overhead and the quality of data
dependency. In contrast, our approach reduces reliance on
external data inputs and enhances real-time adaptability,
offering a novel paradigm that could be more scalable and
efficient in complex software environments.

C. Technological and Ethical Implications

Ethical issue will be a challenge in the proposed framework.
The ability of software to modify its own code raises
significant ethical and security concerns. Autonomy in code
evolution could lead to unforeseen behaviors or
vulnerabilities, particularly if malicious entities exploit the
adaptive mechanisms. Addressing these concerns requires
rigorous testing, transparent design processes, and possibly
new regulatory frameworks to ensure that self-evolving
software remains secure and behaves as intended.

D. Limitations and Challenges

Despite the promising results, our approach faces limitations
related to the complexity of integrating LLMs and Quine
Programs. The complexity not only stems from technical
implementation but also from the need for continuous tuning
and monitoring to ensure the effectiveness of the evolving
codes. Moreover, the scalability of our approach in different
industry contexts remains to be fully tested. Future research
should aim to refine these integrations, reduce resource
consumption, and broaden the applicability of the
technologies across various sectors.

VII. CONCLUSION AND FUTURE WORK

This paper has introduced a pioneering approach to
developing self-evolving software through the integration of
LLMs and Quine Programs. This novel methodology has
shown significant promise, not only in enhancing blockchain

security but also across diverse fields such as network
management and AI-driven software development. The
effectiveness of this approach was validated through rigorous
simulations, which confirmed the system's capability to
dynamically predict, adapt, and mitigate various operational
risks and inefficiencies.
 As we look to the future, our research will aim to broaden
the application of this framework into additional domains,
striving to increase computational efficiency and improve
adaptability. Planned future simulations are set to test the
framework under more complex scenarios and challenge it
with new, unforeseen conditions.
 Expanding on this work, future research may explore the
utilization of self-evolving software in a wider array of
applications, particularly in sectors where adaptive
capabilities are crucial, such as autonomous vehicles, IoT
devices, and personal security systems. These applications
have the potential to significantly benefit from software that
can autonomously evolve and respond to environmental
stimuli. Moreover, we anticipate further enhancements in the
machine learning algorithms within LLMs to improve
prediction accuracy for complex scenarios and in the
refinement of Quine Programs to support a broader spectrum
of software adjustments.
 Through ongoing development and exploration, we aim to
advance the capabilities and applications of self-evolving
software, making significant contributions to the field of
software engineering and beyond. This continued research
will undoubtedly open new pathways for innovation and
practical implementations of adaptive software technologies.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
National Science Foundation under NSF Grant #2028011 for
funding this research.

REFERENCES

[1] A. Manzalini et al., “Self-optimized cognitive network of networks,”
The Computer Journal, vol. 54, no. 2, p. 189, 2011.

[2] T. Rashba and S. Richter, “Self-optimized adaptive algorithm solutions
for vision systems,” BildverarBeitung 2014, p. 27, 2014.

[3] L. Yamamoto, D. Schreckling, and T. Meyer, “Self-replicating and
self-modifying programs in fraglets,” in 2007 2nd Bio-Inspired Models

of Network, Information and Computing Systems, IEEE, 2007, pp.
159–167. Accessed: Dec. 12, 2023. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/4610104/

[4] E. Randazzo, L. Versari, and A. Mordvintsev, “Recursively Fertile
Self-replicating Neural Agents,” in ALIFE 2021: The 2021 Conference

on Artificial Life, MIT Press, 2021.
[5] A.-N. Jahromi, A. M. Saghiri, and M. R. Meybodi, “Q-Defense: When

Q-Learning Comes to Help Proof-of-Work Against the Selfish Mining
Attack,” in 16th International Conference on Agents and Artificial

Intelligence, Spain.
[6] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic

evaluation of large language models of code,” in Proceedings of the

6th ACM SIGPLAN International Symposium on Machine
Programming, San Diego CA USA: ACM, Jun. 2022, pp. 1–10.

[7] “Quine (computing),” Wikipedia. Jan. 09, 2020. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Quine_(computing)&oldid
=934907866

[8] W. B. Langdon and R. Poli, Foundations of genetic programming.
Springer Science & Business Media, 2013.

[9] S. Kim et al., “An LLM Compiler for Parallel Function Calling,” arXiv

preprint arXiv:2312.04511, 2023, Accessed: Dec. 12, 2023. [Online].
Available: https://arxiv.org/abs/2312.04511

[10] C. Cummins et al., “Large language models for compiler
optimization,” arXiv preprint arXiv:2309.07062, 2023, Accessed: Dec.
12, 2023. [Online]. Available: https://arxiv.org/abs/2309.07062

